Chapter 13 of [[reader_006.pdf]] Chapter 10 of [[incropera.pdf]] ## Dropwise Condensation ## Filmwise Condensation $\dot{m} = \rho_{l}u_{m}b\delta$ $\mathrm{Re}_{\delta}=\frac{4\Gamma}{\mu_{l}} = \frac{4\rho_{l}u_{m}\delta}{\mu_{l}}$ ![[Pasted image 20250418211250.png|275]] ![[Pasted image 20250421163953.png|400]] ### Laminar Condensation Valid for $\mathrm{Re}_{\delta}\leq 30$ For a vertical plate, we can derive the following: $\Gamma(x) = \frac{\dot{m}(x)}{b} = \frac{g\rho_{l}(\rho_{l}-\rho_{v})\delta^{3}}{3\mu_{l}}$ ${} h_{fg}' = h_{fg}+0.68c_{p,l}(T_\text{sat}-T_{s}) = h_{fg}(1+0.68\mathrm{Ja}) {}$ $\bar{h}_{L}=0.943 \left( \frac{ \rho_{l}g(\rho_{l}-\rho_{v})h'_{fg}k^{3}_{l}}{\mu_{l}(T_\text{sat}-T_{s})L} \right)^{1/4}$ $\overline{Nu}_{L}=\frac{\bar{h}_{L}L}{k_{l}}=0.943 \left( \frac{ \rho_{l}g(\rho_{l}-\rho_{v})h'_{fg}L^{3}}{\mu_{l}k_{l}(T_\text{sat}-T_{s})} \right)^{1/4}$ ### Turbulent Condensation