## Overview
### Laminar BL: ($\mathrm{Re}<5\times 10^{5}$)
Blasius solution
$\delta_{BL}=f(x,\mathrm{Re}_{x})$
### Turbulent BL: ($\mathrm{Re}>5\times 10^{5}$)
Law of the wall: $u^{\dagger} = \frac{u}{u^{\star} }$, $y^{\dagger} = \frac{yu^{\star}}{\nu}$, and $u^{\star} = \sqrt{ \frac{\tau_{w}}{\rho} }$
**Viscous sublayer**
$u^{\dagger} = y^{\dagger}=\delta_{\text{sublayer}}$
**Overlap layer**
$u^{\dagger} = \frac{1}{\kappa} \ln y^{\dagger} + B$
$\kappa \approx 0.41$, $B \approx 5.0$
**Outer Turbulent Layer**
$\frac{1}{7}$ power law
$\delta_{x,t}=f(\mathrm{Re}_{x},x)$
## Flat Plate Theory
Transition from laminar to turbulent flow happens at the critical reynold's number:
$@R
\mathrm{Re}_{\text{cr}} = \frac{\rho U_{\infty}x_\text{cr}}{\mu}=10^{6}
$
![[Pasted image 20250309160639.png|700]]
![[Pasted image 20250310103150.png]]
### Momentum Integral
Derived from momentum and mass conservation for incompressible fluid flow.
$
\begin{align}
\sum F_{x} = -D
&= \rho \int _{0}^{h} U_{0}(-U_{0})b \, dy + \rho \int_{0}^{\delta} u^{2}b \, dy \\
&= \rho b U_{0} * \underbrace{ (U_{0}h) }_{ \int_{0}^{\delta} u \, dy } - \rho b\int_{0}^{\delta} u^{2} \, dy \\
&= \rho b \int_{0}^{\delta} u(U_{0}-u) \, dy
\end{align}
$
### Momentum Thickness
Measure of total plate drag, defined by
$
D = \rho bU^{2}\theta
$
Then the momentum integral gives us
$
\theta = \int_{0}^{\delta} \frac{u}{U}\left( 1-\frac{u}{U} \right) \, dy
$
Since $D(x) = b \int_{0}^{x} \tau_{w} \, dx$, we have $\tau_{w}=\frac{1}{b} \frac{dD}{dx}$, and thus
$
\tau_{w} = \rho U^{2} \frac{d\theta}{dx}
$
### Skin Friction
Analogous to friction factor in ducts
$
c_{f} = \frac{2\tau_{w}}{\rho U^{2}} = 2 \frac{d\theta}{dx}
$
### Boundary Layer
Under Karman's parabolic velocity profile assumption for laminar flow, we have
$
u(x,y) \approx U\left( \frac{2y}{\delta} - \frac{y^{2}}{\delta^{2}} \right)
$
For turbulent flows, we assume a logarithmic overlap layer
which can be solved to obtain an estimate within 10% of the exact Blasius solution shown below:
$
\frac{\delta}{x} \approx \begin{cases}
\frac{5.0}{\sqrt{ \mathrm{Re}_{x} }} & & \text{Laminar} \\ \\
\frac{0.16}{\mathrm{Re}_{x}^{1/7}} & & \text{Turbulent}
\end{cases}
$
### Displacement Thickness
Measure of outer streamline deflection
$
\delta = h + \delta^{\star}
$
$
\delta^{\star} = \int_{0}^{\delta} \left( 1-\frac{u}{U} \right) \, dy
$
![[Pasted image 20250310095343.png|395]]
## Turbulent Flow
Define time mean $\bar{u} = \frac{1}{T}\int_{0}^{T} u \, dt$ and fluctuation $u'=u - \bar{u}$
Then Navier-Stokes simiplifies to
$
\rho \frac{d\bar{u}}{dt} \approx -\frac{ \partial \bar{p} }{ \partial x } + \rho g_{x} + \frac{ \partial \tau }{ \partial y }
$
which gives us
$
\begin{align}
\tau &= \mu \frac{ \partial \bar{u} }{ \partial y } -\rho \overline{u'v'} \\
&=\tau_{\text{lam}} + \tau_{\text{turb}}
\end{align}
$
![[Pasted image 20250310113100.png|500]]
1. Wall layer: Viscous shear dominates, $\tau_{lam}\gg \tau_{turb}$
2. Overlap Layer: Both matter
3. Outer layer: Turbulent shear dominates, $\tau_{\text{turb}} \gg \tau_{\text{lam}}$
### Friction Velocity
Dimensional analysis shows that $u$ is independent of shear layer thickness, and thus the quantity *friction velocity*, $u^{\star}$, is coined which has units of velocity but isn't actually a flow velocity.
$
u^{\star} = \sqrt{ \frac{\tau_{w}}{\rho} }
$
$
\begin{align}
u^{\dagger} = \frac{u}{u^{\star} } & & & y^{\dagger} = \frac{yu^{\star}}{\nu}
\end{align}
$
### Wall Layer
Good for $y^{\dagger}<5$
$
u^{\dagger} = y^{\dagger}=\delta_{\text{sublayer}}
$
$
\frac{ \partial v }{ \partial y } = \tau_{w}
$
This usually covers less than 2% of the profile and is negligible.
### Logarithmic Overlap Layer (Law of the wall)
$
u^{\dagger} = \frac{1}{\kappa} \ln y^{\dagger} + B
$
$\kappa \approx 0.41$
$B \approx 5.0$
![[Pasted image 20250310111827.png|500]]
### Skin-Friction Law
Derived from log-overlap layer law and skin friction coefficient
$
\sqrt{ \frac{2}{c_{f}} } \approx 2.44 \ln\left( \mathrm{Re_{\delta}}\sqrt{ \frac{c_{f}}{2} } \right) + 5
$
But much easier to use a power-law approximation
$
c_{f} \approx 0.02 \mathrm{Re_{\delta} ^{-1/6}}
$
### Pressure Gradients
![[Pasted image 20250310220248.png|525]]