## Conduction Thermal heat transfer through contact between objects. ### Fourier's Law $q''_{x}=\frac{q_{x}}{A} = -k \frac{ \partial T }{ \partial x }$ $k$ = thermal conductivity $\left[ \mathrm{\frac{W}{mK}} \right]$ $q''$ = heat flux $\left[ \mathrm{\frac{W}{m^2}} \right]$ or more generally, $\vec{q}'' = -k\nabla T$ ## Convection Mode of heat transfer due to conduction / thermal diffusion plus bulk motion of fluid. $\mathrm{Nu} = \frac{hD}{k}=f(\mathrm{Re}, \mathrm{\mathrm{Pr}})$ $\mathrm{Pr} = \frac{\nu}{\alpha}=\frac{\text{kinematic viscosity}}{\text{thermal diffusivity}}$ 1. Calculate the Reynolds number ($\frac{\rho vL}{v}$) and Prandtl number ($\frac{\nu}{\alpha}=\frac{c_{p}\mu}{k}$) 2. Choose the right correlation and calculate Nusselt number 3. Calculate $h$ from Nusselt number: $h= \frac{\mathrm{Nu}\cdot k}{d}$ 4. $\dot{q}''=h\Delta T$ or $\dot{Q}=hA\Delta T$ ## Newton's Law of Cooling $\dot{Q} = hA\Delta T$ $q''_{s} = h(T_{s} - T_{\infty})$ $q =$ heat transfer $\mathrm{W}$ $q =$ heat flux $\mathrm{W/m^{2}}$ $h =$ heat transfer coefficient $\mathrm{\frac{W}{m^{2}K}}$ ## External Flow ### Thermal Boundary Layer Region in which you have thermal gradients between $T_{s}$ and $T_{\infty}$ ![[Pasted image 20250316225128.png|350]] ### Total Heat Transfer Rate $q = \bar{h} A_{s} (T_{s} - T_{\infty})$ where average convection coefficient $\bar{h}$ is defined as $\bar{h} = \frac{1}{A_{s}} \int _{A_{s}} h \, dA_{s}$ which for a flat plate reduces to $\bar{h} = \frac{1}{L} \int_{0}^{L} h \, dx$ ### Empirical Correlation With dimensional analysis and experimentation the following relationship has been shown: $\overline{Nu_{L}} = C \mathrm{Re}_{L}^{m}\mathrm{Pr}^{n}$ $C$, $m$, and $n$, are typically independent of the nature of the fluid and instead vary with surface geometry and type of flow. #### Flow over Isothermal Plate Assuming steady, incompressible, laminar flow with constant fluid properties and negigible viscous dissipation and $\frac{dp}{dx}=0$ | Flow Type | Condition | Correlation | | --------- | -------------------------------------------------------------------------------------- | ------------------------------------------------------------------------- | | Laminar | $\mathrm{Pr} \geq 0.6$ | $\overline{Nu}_{x} = 0.664 \mathrm{Re}_{x}^{1/2} \mathrm{Pr}^{1/3}$ | | Turbulent | $\mathrm{Pr} \geq 0.6$ | $\overline{Nu}_{x} = 0.0296 \mathrm{Re}_{x}^{4/5} \mathrm{Pr}^{1/3}$ | | Mixed | $0.6 \leq \mathrm{Pr} \leq 60lt;br>$\mathrm{Re}_{x,c} \leq \mathrm{Re}_{L} \leq 10^{8}$ | $\overline{Nu}_{x} = (0.037 \mathrm{Re}_{x}^{4/5} - A) \mathrm{Pr}^{1/3}$ | ## Natural Convection No forced / defined bulk flow velocity, so we cannot use Reynold's number Instead use Rayleigh number: $\mathrm{Ra} = \mathrm{Gr}\times \mathrm{Pr}=\frac{\text{Buoyancy}}{\text{viscosity}}\times\frac{\text{momentum diffusivity}}{\text{thermal diffusivity}}$ $Nu = f(\mathrm{Ra},\mathrm{Pr})$ ## Internal Flows Laminar, fully developed flow → $\mathrm{Nu}= \begin{cases}\text{constant heat flux } \mathrm{ q''}: & 4.36\\ \text{constant wall }T_{s}: & 3.66\end{cases}$ $\Delta T = T_{s}-T_{b}$, where $T_{b}$ is a chosen "bulk mean temperature" analogous to $v_{\text{avg}}$ $\dot{Q} = hA\Delta T_{mean}$ where $\Delta T_{mean}$ is the mean of the temperature difference which logarithmically decays across the length of the pipe $\Delta T_{mean} = \frac{\Delta T_{1}-\Delta T_{2}}{\ln(\Delta T_{1})-\ln\Delta (T_{2})}$ ![[Pasted image 20250516235942.png]] ![[Pasted image 20250517000532.png]] #### Fully developed flow through a circular tube | Flow Type | Condition | Correlation | | ----------------------- | ----------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------- | | Turbulent (Internal) | $0.7 \leq \mathrm{Pr} \leq 160lt;br>$\mathrm{Re}_D > 10,\!000lt;br>$L/D \geq 10$ | $\mathrm{Nu}_D = 0.023 \mathrm{Re}_D^{4/5} \mathrm{Pr}^{n}lt;br>$n = 0.3$ for cooling, $n = 0.4$ for heating | | Turbulent (Sieder-Tate) | $0.7 \leq \mathrm{Pr} \leq 16,\!700lt;br>$\mathrm{Re}_D > 10,\!000lt;br>$L/D \geq 10$ | $\mathrm{Nu}_D = 0.027 \mathrm{Re}_D^{4/5} \mathrm{Pr}^{1/3} \left( \frac{\mu}{\mu_s} \right)^{0.14}$ | | Turbulent (Gnielinski) | $0.5 \leq \mathrm{Pr} \leq 2000lt;br>$3,\!000 \leq \mathrm{Re}_D \leq 5 \times 10^6$ | $\mathrm{Nu}_D = \frac{(f/8)(\mathrm{Re}_D - 1000)\mathrm{Pr}}{1 + 12.7(f/8)^{1/2}(\mathrm{Pr}^{2/3} - 1)}$ |