## Heat Transfer from a Fin
**Maximum possible heat transfer** (if the entire fin were at base temperature):
$Q_{\text{max}} = h A_f (T_b - T_\infty)$
**Actual heat transfer** depends on geometry and tip condition.
For example, for an adiabatic tip:
$Q_f = \sqrt{hPkA_c} (T_b - T_\infty) \tanh(mL)$
**Fin efficiency** (how well a fin performs compared to ideal):
$\eta_f = \frac{Q_{\text{actual}}}{Q_{\text{max}}}$
## Fin Resistance
- Fin resistance (includes efficiency):
$R_f = \frac{1}{\eta_f h A_f}$
## Fin Parameter and Definitions
Fin parameter:
$m = \sqrt{\frac{hP}{kA_c}}$
- Fin surface area: $A_f$
Fin perimeter: $P$
Cross-sectional area: $A_c$
- Modified fin heat transfer term:
$M = h P k A_c (T_b - T_\infty)$
## Efficiency Expressions (Special Cases)
- Infinite fin:
$\eta_f = \frac{1}{mL}$
- Adiabatic tip:
$\eta_f = \frac{\tanh(mL)}{mL}$
## Governing Equation and Solution
- 1D conduction + convection (steady state):
$\frac{d^2 \theta}{dx^2} - m^2 \theta = 0$, where $\theta(x) = T(x) - T_\infty$
- General solution:
$\theta(x) = A e^{mx} + B e^{-mx}$
- With adiabatic tip boundary condition:
$\frac{d\theta}{dx}\big|_{x=L} = 0$
- With prescribed tip temperature:
$\theta(L) = \theta_L$
## Heat Transfer Rate (Adiabatic Tip)
- Heat conducted at base:
$Q_f = \sqrt{hPkA_c} (T_b - T_\infty) \tanh(mL)$
- Can also be written:
$Q_f = M \tanh(mL)$
### Fin Tip Conditions
| Tip Condition | Temperature Distribution $\theta(x)/\theta_b$ | Fin Heat Transfer Rate $Q_f$ |
|------------------------|---------------------------------------------------------------------------|--------------------------------------------|
| Infinite fin | $\theta(x)/\theta_b = e^{-mx}$ | $Q_f = M$ |
| Adiabatic tip | $\theta(x)/\theta_b = \frac{\cosh(m(L-x))}{\cosh(mL)}$ | $Q_f = M \tanh(mL)$ |
| Prescribed temp at tip | $\theta(x)/\theta_b = \frac{\sinh(mL) + \sinh(m(L-x))}{\sinh(mL)}$ | $Q_f = M \left(\frac{\cosh(mL) - 1}{\sinh(mL)}\right)$ |
Where:
- $\theta(x) = T(x) - T_\infty$
- $\theta_b = T_b - T_\infty$
- $m = \sqrt{\frac{hP}{kA_c}}$
- $M = \sqrt{hPkA_c} (T_b - T_\infty)$