## Taylor Series
$
f(x + h) = f(x) + f'(x)h + f''(x) \frac{h^{2}}{2!} + \dots + f^{(n)}(x) \frac{h^{n}}{n!} + \dots
$
## Basic Finite Differences
![[Pasted image 20250410010844.png|350]]
### First Derivative Finite Differences
| Scheme | Formula | Order of Accuracy | Notes |
| -------- | ------------------------------------------ | ----------------- | ------------------------------- |
| Forward | $f'(x) \approx \frac{f(x+h) - f(x)}{h}$ | First-order | Uses point ahead: $x+h$ |
| Backward | $f'(x) \approx \frac{f(x) - f(x-h)}{h}$ | First-order | Uses point behind: $x-h$ |
| Centered | $f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$ | Second-order | Uses points symmetric about $x$ |
### Second Derivative Finite Differences
| Scheme | Formula | Order of Accuracy | Notes |
| -------- | ----------------------------------------------------- | ----------------- | ------------------------------------------------- |
| Forward | $f''(x) \approx \frac{f(x+2h) - 2f(x+h) + f(x)}{h^2}$ | 1st-order | Uses $x$, $x+h$, $x+2h$ |
| Backward | $f''(x) \approx \frac{f(x) - 2f(x-h) + f(x-2h)}{h^2}$ | 1st-order | Uses $x$, $x-h$, $x-2h$ |
| Centered | $f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$ | 2nd-order | Symmetric, more accurate, default in interior use |
## Higher Order Finite Differences
### Taylor Table
Method to systematically derive finite difference formulas with a desired order of accuracy for approximating derivatives
| Scheme | Formula | Order of Accuracy | Stencil Width |
| -------- | ------------------------------------------------------------------ | ----------------- | ------------- |
| Forward | $\frac{-3f(x_i) + 4f(x_{i+1}) - f(x_{i+2})}{2h}$ | 2nd | 3 |
| Forward | $\frac{-11f(x_i) + 18f(x_{i+1}) - 9f(x_{i+2}) + 2f(x_{i+3})}{6h}$ | 3rd | 4 |
| Backward | $\frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h}$ | 2nd | 3 |
| Backward | $\frac{11f(x_i) - 18f(x_{i-1}) + 9f(x_{i-2}) - 2f(x_{i-3})}{6h}$ | 3rd | 4 |
| Centered | $\frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h}$ | 4th | 5 |
Ex. Approximate $\frac{\partial u}{\partial x} \big|_{j}$ using a centered 3-point stencil:
$
\frac{\partial u}{\partial x}\bigg|_j \approx a u_{j-1} + b u_j + c u_{j+1}
$
Use Taylor series to expand $u_{j-1}$, $u_j$, and $u_{j+1}$ about point $j$:
| Term | $u_j$ | $\Delta x \cdot u_j'$ | $\Delta x^2 \cdot u_j''$ | $\Delta x^3 \cdot u_j'''$ | $\Delta x^4 \cdot u_j^{(4)}$ | $\Delta x^5 \cdot u_j^{(5)}$ |
| ------------------------------------------------ | ----------- | ---------------------- | ------------------------ | ------------------------- | ---------------------------- | ---------------------------- |
| $a u_{j-1}$ | $a$ | $a \cdot \frac{-1}{1}$ | $a \cdot \frac{1}{2}$ | $a \cdot \frac{-1}{6}$ | $a \cdot \frac{1}{24}$ | $a \cdot \frac{-1}{120}$ |
| $b u_j$ | $b$ | $0$ | $0$ | $0$ | $0$ | $0$ |
| $c u_{j+1}$ | $c$ | $c \cdot \frac{1}{1}$ | $c \cdot \frac{1}{2}$ | $c \cdot \frac{1}{6}$ | $c \cdot \frac{1}{24}$ | $c \cdot \frac{1}{120}$ |
Choose $a$, $b$, $c$ so the coefficient of $u_j'$ is $1$ and other terms vanish up to the desired order. The first term that doesn't vanish is the truncation error.
### Padé Schemes (Compact FD)
Pade schemes are generally of the following form:
$
d\left( \frac{ \partial u }{ \partial x } \right)_{j-1} + \left( \frac{ \partial u }{ \partial x } \right)_{j}+e\left( \frac{ \partial u }{ \partial x } \right)_{j+1} - \frac{1}{\Delta x}(au_{j-1}+bu_{j}+cu_{j+1}) = ?
$
Here are some common ones:
| Scheme | Equation | Order of Accuracy | Stencil Width |
| ------------ | -------------------------------------------------------------------------------------------------------------------------- | ----------------- | ------------- |
| Centered | $\frac{1}{4} f'_{i-1} + f'_i + \frac{1}{4} f'_{i+1} = \frac{3}{4h}(f_{i+1} - f_{i-1})$ | 4th | 3 |
| Higher order | $\frac{1}{3} f'_{i-1} + f'_i + \frac{1}{3} f'_{i+1} = \frac{14}{9h}(f_{i+1} - f_{i-1}) + \frac{1}{36h}(f_{i-2} - f_{i+2})$ | 6th | 5 |
| Forward | $f'_i + 2f'_{i+1} = \frac{-5f_i + 4f_{i+1} + f_{i+2}}{h}$ | 2nd | 3 |
| Backward | $f'_i + 2f'_{i-1} = \frac{5f_i - 4f_{i-1} - f_{i-2}}{h}$ | 2nd | 3 |
The derivatives are unknown and must be determined implictly by solving a tridiagonal system of linear equations:
$
\begin{bmatrix}
1 & e & 0 & ⋯ & 0 \\
d & 1 & e & ⋯ & 0 \\
0 & d & 1 & ⋯ & 0 \\
⋮ & ⋮ & ⋮ & ⋱ & e \\
0 & ⋯ & 0 & d & 1
\end{bmatrix} \begin{bmatrix}
f_{1}' \\
f_{2}' \\
⋮ \\
f_{n}'
\end{bmatrix}-\frac{1}{\Delta x}\begin{bmatrix}
b & c & 0 & ⋯ & 0 \\
a & b & c & ⋯ & 0 \\
0 & a & b & ⋯ & 0 \\
⋮ & ⋮ & ⋮ & ⋱ & c \\
0 & ⋯ & 0 & a & b
\end{bmatrix}\begin{bmatrix}
u_{1} \\
u_{2} \\
⋮ \\
u_{n}
\end{bmatrix}=0
$
The schemes can be derived similarly to taylor tables by taking the taylor expansion of each unknown and solving for the coefficients $a$, $b$, $c$, $d$, and $e$.
| | $u_j$ | $\Delta x \left( \frac{\partial u}{\partial x} \right)_j$ | $\Delta x^2 \left( \frac{\partial^2 u}{\partial x^2} \right)_j$ | $\Delta x^3 \left( \frac{\partial^3 u}{\partial x^3} \right)_j$ | $\Delta x^4 \left( \frac{\partial^4 u}{\partial x^4} \right)_j$ | $\Delta x^5 \left( \frac{\partial^5 u}{\partial x^5} \right)_j$ |
| --------------------------------------------------------------- | ----- | --------------------------------------------------------- | --------------------------------------------------------------- | --------------------------------------------------------------- | --------------------------------------------------------------- | --------------------------------------------------------------- |
| $\Delta x d \left( \frac{\partial u}{\partial x} \right)_{j-1}$ | | $d$ | $d \cdot \frac{-1}{1}$ | $d \cdot \frac{(-1)^2}{2}$ | $d \cdot \frac{(-1)^3}{6}$ | $d \cdot \frac{(-1)^4}{24}$ |
| $\Delta x \left( \frac{\partial u}{\partial x} \right)_j$ | | $1$ | | | | |
| $\Delta x e \left( \frac{\partial u}{\partial x} \right)_{j+1}$ | | $e$ | $e \cdot \frac{1}{1}$ | $e \cdot \frac{1^2}{2}$ | $e \cdot \frac{1^3}{6}$ | $e \cdot \frac{1^4}{24}$ |
| $-a u_{j-1}$ | $-a$ | $-a \cdot \frac{-1}{1}$ | $-a \cdot \frac{(-1)^2}{2}$ | $-a \cdot \frac{(-1)^3}{6}$ | $-a \cdot \frac{(-1)^4}{24}$ | $-a \cdot \frac{(-1)^5}{120}$ |
| $-b u_j$ | $-b$ | | | | | |
| $-c u_{j+1}$ | $-c$ | $-c \cdot \frac{1}{1}$ | $-c \cdot \frac{1^2}{2}$ | $-c \cdot \frac{1^3}{6}$ | $-c \cdot \frac{1^4}{24}$ | $-c \cdot \frac{1^5}{120}$ |
## Nonuniform Grids
- Nonuniform grids have variable spacing: $h_i = x_i - x_{i-1}$ is not constant.
- Standard FD formulas (assuming uniform $h$) are not valid.
- You must derive new formulas using actual spacings via Taylor expansions.
### First Derivative (Centered, 3-Point Nonuniform)
Let:
- $h_- = x_i - x_{i-1}$
- $h_+ = x_{i+1} - x_i$
Then:
$
f'(x_i) \approx \frac{-h_+^2 f_{i-1} + (h_+^2 - h_-^2) f_i + h_-^2 f_{i+1}}{h_- h_+ (h_- + h_+)}
$
- This is a second-order accurate scheme for arbitrary spacing.
- For higher-order accuracy, use larger stencils and solve via Taylor expansions.