## Overview
Given vⁿ, pⁿ:
1. Discretize momentum → compute v*
2. Solve pressure Poisson equation:
$\nabla^{2}p=\left( \frac{\rho}{\Delta t} \right) \nabla\cdot v^{\star}$
3. Correct velocity:
$v^{n+1}=v^{\star}-\left( \frac{\Delta t}{\rho} \right)\nabla p$
4. Advance time step or iterate (steady case)
## Discretization
$\frac{ \partial \rho \vec{v} }{ \partial t } + \nabla.(\rho \vec{v}\vec{v}) = -\nabla p + \mu \nabla^{2}\vec{v}+\rho \vec{g}$
$\nabla.\vec{v}=0$
### Space
Using the **finite volume method (FVM)**:
- Divide the domain into control volumes.
- Integrate the equations over each CV.
- Apply the divergence theorem to turn volume integrals into surface integrals.
Each term in the momentum equation is then discretized:
- **Convective term**: needs interpolation (UDS, CDS, QUICK, etc.)
- **Diffusion term**: usually central differences
- **Pressure gradient**: centered or interpolated to faces
- **Body forces**: added as source terms
### Time
## Pressure Correction
$\frac{ \partial }{ \partial x_{i} }\left( \frac{ \partial p }{ \partial x_{i} } \right)= -\frac{ \partial }{ \partial x_{i} }\left( \frac{ \partial (\rho u_{i}u_{j}) }{ \partial x_{j} } \right)$
1. Solve momentum for a known pressure resulting in a new velocity
2. Solve Poisson to obtain a corrected pressure
3. Correct velocity (and possibly pressure)
4. Iterate for next time step
Coupled nonlinear algebraic equations:
$(\rho u_{i})^{n+1}-(\rho u_{i})^{n}=\Delta t\left(- \frac{ \partial (\rho u_{i}u_{j})^{n+1} }{ \partial x_{j} }+\frac{ \partial \tau_{ij}^{n+1} }{ \partial x_{j} }-\frac{ \partial p^{n+1} }{ \partial x_{i} } \right)$
$\frac{ \partial }{ \partial x_{i} }\left( \frac{ \partial p^{n+1} }{ \partial x_{i} } \right)= -\frac{ \partial }{ \partial x_{i} }\left( -\frac{ \partial (\rho u_{i}u_{j})^{n+1} }{ \partial x_{j} } + \frac{ \partial \tau_{ij}^{n+1} }{ \partial x_{j} }\right)$
### Poisson Equation
Find pressure that enforces incompressibility using intermediate velocity
correct velocity: $v^{n+1}=v^{\star}-\frac{\Delta t}{\rho}\nabla p$
plug into continuity: $\nabla \cdot \left( v^{\star}-\frac{\Delta t}{\rho}\nabla p \right)=0$
Poisson equation:
$\boxed{\nabla^{2}p=\frac{\rho}{\Delta t}\nabla\cdot v^{\star}}$
## Time Stepping
### Implicit
- Use pressure from time $t^{n}$ to compute velocity at $t^{n+1}$.
- Pressure correction is computed at the old time level.
### Explicit
- Coupled solution: velocity and pressure are solved simultaneously.
- More stable for stiff problems, especially at larger time steps.
#### 2. **Implicit Time-Stepping (e.g., Backward Euler)**
- Coupled solution: velocity and pressure are solved simultaneously.
- More stable for stiff problems, especially at larger time steps.
## Solver types
### Nonlinear Solver
- Guess $u_{i}^{n}$ and employ a nonlinear solver at each time step for $u_{i}^{n+1}$
- Fixed-point, newton-raphson, or secant
### Linearization about $t_{n}$
- nonlinear term is only quadratic, so we can neglect the 2nd order ${} \Delta u_{i}\Delta u_{j}$ term
### ADI Scheme
- Split momentum equations to block tri-diagonal 1D problems
## Steady problems
For steady problems, you just want to end up at the right solution, so an implicit scheme with a large timestep works well
$A^{u_{i}^{n+1}}u_{i}^{n+1} = b_{u_{i}}^{n+1}-\frac{ \partial p^{n+1} }{ \partial x_{i} }$
### Implicit Methods
#### Outer Iterations
Nonlinear solve iterating on $m\star$ and updates $A^{u_{i}^{m\star}}$ and $u_{i}^{m\star}$ for new velocity given the old pressure
$A^{u_{i}^{m\star}}u_{i}^{m\star} = b_{u_{i}^{m\star}}^{m-1}-\frac{ \partial p^{m-1} }{ \partial x_{i} }$
enforce continuity and get a new pressure
#### Inner Iterations
Linear solve for final corrected $u_{i}^{n+1}$
$A^{u_{i}^{m\star}}u_{i}^{m} = b_{u_{i}^{m\star}}^{m-1}-\frac{ \partial p^{m} }{ \partial x_{i} }$
### Projection Methods
Construct a velocity field that doesn't satisfy continuity, then correct it using a pressure gradient
1. solve for intermediate velocity field $u^{\star}$ without considering pressure
2. Find $p^{n+1}$ using Poisson equation
3. Correct velocity using pressure gradient to get $u^{n+1}$
- Substitute $u_{i}^{m}=u^{m\star}_{i}+u'$ and $p^{m}=p^{m-1}+p'$
- SIMPLE: neglects contributions of $u'$
- SIMPLEC: approximates $u'$ in the pressure equation as a function of $p'$
- SIMPLER and PISO methods: iterate to obtain $u'$
## Unsteady Problems
### Projection Methods
$P u_{i}^{\star^{n+1}} = (I-\mathrm{Divergence})u_{i}^{\star^{n+1}}$
### Helmholtz Theorem
For sufficiently smooth vector fields $\vec{f}$
$\vec{f} = \vec{\nabla} \phi + \vec{\nabla} \times \vec{a}$
$\vec{\nabla}\phi$: curl free component ($\vec{\nabla}\times \vec{\nabla}\phi=0$
$\vec{\nabla}.(\vec{\nabla} \times \vec{a})=0$
### Non-Incremental Projection Method
Ignore pressure, then correct
1. Time Mom Equation
$\rho u_{i}^{m+1}-\rho u_{i}^{m} = \Delta t ( A_\text{advect}^{m/m+1}+D_\text{iff}^{m/m+1}) - \Delta t \frac{ \partial P^{m+1} }{ \partial x_{i} } + BC$
2. Prediction Equation
$\rho u_{i}^{\star^{m+1}}-\rho u_{i}^{m} = \Delta t ( A_\text{advect}^{\star^{m/m+1}}+D_\text{iff}^{\star^{m/m+1}}) - 0 + BC$
Subtract 1 - 2
$\rho u_{i}^{n+1}-\rho u_{i}^{\star^{m+1}} = \Delta t(A^{m/m+1}-A^{\star^{m/m+1}} + D^{m/m+1} - D^{\star^{m/m+1}})- \Delta t \frac{ \partial p }{ \partial x_{i} }$
If A and $D$ are explicit at time $n$, $\Delta t(A-A+D-D)=0$
$\rho u_{i}^{n+1}-\rho u_{i}^{\star^{m+1}} = - \Delta t \frac{ \partial p }{ \partial x_{i} }$
eqn 3 ^
Correction equation for velocity
Impose $\vec{\nabla}.\rho \vec{u}=0$
$\frac{ \partial }{ \partial x_{i} }(\rho u_{i}^{\star})^{n+1} = \Delta t \frac{ \partial }{ \partial x_{i} }\left( \frac{ \partial p^{n+1} }{ \partial x_{i} } \right)$
^ PPE
BC:
use NS
- at the boundary
- along the normal direction
Take eqn 3, $\cdot \vec{n}$ at boundary
$\underbrace{ \left.(\rho \vec{u}^{n+1}.\vec{n})\right|_{\text{bnd}} - \left.(\rho \vec{u}^{\star}.\vec{n})\right|_{\text{bnd}} }_{ \text{should = 0} } = -\left.(\Delta t \vec{\nabla}P^{n+1} \cdot \vec{n})\right|_{\text{bnd}}$
$0 = -\left.(\Delta t \vec{\nabla}P^{n+1} \cdot \vec{n})\right|_{\text{bnd}}$
### Incremental Methods
Use pressure from previous time step to predict velocity, then solve for the correction pressure $\delta q$ and update pressure with $p^{n+1}=p^{n}+\delta q$
#### Rotational Incremental
Desired scheme: (i)
$\rho u^{n+1}_{i}=\rho u^{n}_{i}+\Delta t(A^{n}+D^{n+1})-\Delta t \frac{ \partial p^{n+1} }{ \partial x_{i} }$
use diffusion implicitly to help with stability condition
Velocity predictor scheme: (ii)
$\rho u^{\star^{n+1}}_{i}=\rho u^{n}_{i}+\Delta t(A^{n}+D^{\star^{n+1}})-\Delta t \frac{ \partial p^{n} }{ \partial x_{i} }$
${} D^{\star^{n+1}}=\frac{ \partial }{ \partial x_{j} }\left( \mu \frac{ \partial u_{i}^{\star^{n+1}} }{ \partial x_{j} } \right) {}$
Velocity corrector scheme:
$\rho u^{n+1}_{i}=\rho u_{i}^{\star^{n+1}}-\Delta t \frac{ \partial \delta q^{n+1} }{ \partial x_{i} }$
Pressure Poisson Equation:
$\underbrace{ \frac{ \partial }{ \partial x_{i} }(\rho u^{n+1}_{i}) }_{ \text{want this to = 0} }=\underbrace{ \frac{ \partial }{ \partial x_{i} }(\rho u_{i}^{\star^{n+1}}) }_{ \neq 0 }-\Delta t\frac{ \partial }{ \partial x_{i} }\left( \frac{ \partial \delta q^{n+1} }{ \partial x_{i} } \right)$
$u_{i}^{\star^{n+1}}$ satisfies momentum equation and BC's
Derive boundary condition for $\delta q^{n+1}$
Project NS momentum onto $\vec{n}$ at boundary
$\left.\rho u^{n+1}\cdot \vec{n}\right|_{\delta D}=\left.\rho u^{\star^{n+1}}\cdot \vec{n}\right|_{\delta D} - \Delta t \frac{ \partial \delta q^{n+1} }{ \partial \vec{x} }\cdot \vec{n}$
$\frac{ \partial \delta q^{n+1} }{ \partial n } = 0$
Get $p^{n+1}$ by subtracting (ii) from (i)
$\rho u_{i}^{n+1}-\rho u_{i}^{\star^{n+1}}= \Delta t(0 + D^{n+1}-D^{\star^{n+1}})-\Delta t \frac{ \partial }{ \partial x_{i} }(p^{n+1}-p^{n})$
$-\frac{ \partial \delta q^{n+1} }{ \partial x_{i} }= \frac{ \partial }{ \partial x_{j} } \left( \mu \frac{ \partial u_{i}^{n+1} }{ \partial x_{j} } + \mu \frac{ \partial u_{i}^{\star^{n+1}} }{ \partial x_{j} } \right) - \frac{ \partial }{ \partial x_{i} }(p^{n+1}-p^{n})$
Take momentum divergence
$\frac{ \partial }{ \partial x_{i} }\left( \frac{ \partial }{ \partial x_{i} }(p^{n+1}-p^{n}-\delta q^{n+1}) \right) = \frac{ \partial }{ \partial x_{i} }\left( \frac{ \partial }{ \partial x_{j} }\left( -\mu \frac{ \partial u_{i} }{ \partial x } -\mu \frac{ \partial u_{i}^{\star^{n+1}} }{ \partial x_{j} }\right) \right)$
if $\mu=$ constant:
$p^{n+1}=p^{n}+q^{n+1}-\mu \frac{ \partial u_{i}^{\star^{n+1}} }{ \partial x_{i} }$
pressure gradient at the normal boundary can change in rotational incremental
| | BC normal | BC tangent | Continuity |
| --------------------------- | --------- | ---------- | ---------- |
| $u_{i}^{n+1}$ | yes | no | yes |
| $u_{i}^{\star^{n+1}}$ | yes | yes | no |
### Fractional Step Methods
Write navier stokes as
$u_{i}^{n+1}=u_{i}+(C_{i}+D_{i}+P_{i})\Delta t$
solve it in three steps:
$u_{i}^{\star}=u_{i}^{n}+C_{i}\Delta t$
$u_{i}^{\star\star}=u_{i}^{\star}+D_{i}\Delta t$
$u_{i}^{n+1}=u_{i}^{\star\star}+P_{i}\Delta t$
Example based on crank-nicolson:
first step