## Order of Convergence $ e_{n} = x_{n} - x^{e} $ Convergence of order $p$ exists if there exists a constant $C\neq_{0}$ such that $ \lim_{ n \to \infty } \frac{\lvert e_{n+1} \rvert}{\lvert e_{n} \rvert ^{p}}=C $ ## Bracketing Methods | Name | $x_{n+1}$ | Convergence | Error | Convergence Condition | | --------- | ------------------------------------------------- | ------------- | ----------- | ----------------------------------- | | Bisection | $\frac{a_n + b_n}{2}$ | ${} p=1 {}$ | $O(2^{-n})$ | Opposite signs on $f(a)$ and $f(b)$ | | False Pos | $b_n - \frac{f(b_n)(a_n - b_n)}{f(a_n) - f(b_n)}$ | ${} 1<p<2 {}$ | $O(\log n)$ | Opposite signs on $f(a)$ and $f(b)$ | ### Bisection - Start with interval [a,b] where $f(a)$ and $f(b)$ are opposite signs - Keep cutting interval in half until desired accuracy reached - Reliable but slow | Iteration Formula | Convergence Rate | Error | Convergence Condition | | ------------------------------- | ---------------- | ----------- | ----------------------------------- | | $x_{n+1} = \frac{a_n + b_n}{2}$ | ${} p=1 {}$ | $O(2^{-n})$ | Opposite signs on $f(a)$ and $f(b)$ | ### False position Same process as bisection, but instead of dividing by two to find the new x-guess, use linear approximation between a and b to estimate new x-guess 1. Guaranteed to converge 2. Can get stuck for highly asymmetrical functions | Iteration Formula | Convergence Rate | Error | Convergence Condition | | ----------------------------------------------------------- | ---------------- | ----------- | ----------------------------------- | | $x_{n+1} = b_n - \frac{f(b_n)(a_n - b_n)}{f(a_n) - f(b_n)}$ | ${} 1<p<2 {}$ | $O(\log n)$ | Opposite signs on $f(a)$ and $f(b)$ | ## Open Methods | Name | $x_{n+1}$ | Convergence | Error | Convergence Condition | | -------------- | ------------------------------------------------------------------- | --------------- | ---------------- | ----------------------------- | | Fixed-Point | $g(x_{n})lt;br> | ${} p=1 {}$ | ${} O(n) {}$ | $\|g’(x)\|<1$ for x near root | | Newton-Raphson | $x_{n} - \frac{f(x_{n})}{f'(x_{n})}$ | ${} 1<p<2 {}$ | $O(\log \log n)$ | Nonzero slope near zeros | | Secant | $x_{n} - \frac{f(x_{n})(x_{n-1}-x_{i})}{f(x_{n-1}-f(x_{n}))}$ | $p \approx 1.6$ | $O(\log \log n)$ | Nonzero slope near zeros | ### Fixed-Point Iteration Rearrange $f(x)=0$ into $g(x)=x$ and iterate using that | Iteration Formula | Convergence Rate | Error | Convergence Condition | | ------------------------ | ---------------- | ------------ | ------------------------------------- | | $x_{n+1} = g(x_{n})lt;br> | ${} p=1 {}$ | ${} O(n) {}$ | $\|g’(x)\|<1$ for all x near the root | ### Newton-Raphson Find the root of the function linearized at $x$ Can be difficult to calculate the Jacobian $f'(x)$ | Iteration Formula | Convergence Rate | Error | Convergence Condition | | ---------------------------------------------- | ---------------- | ---------------- | -------------------------------- | | $x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$ | ${} 1<p<2 {}$ | $O(\log \log n)$ | No zero slope regions near zeros | ### Secant Approximate jacobian with backward finite difference, at the cost of storage $ f'(x_{n}) =\frac{ f(x_{n}) -f(x_{n-1})}{x_{n} - x_{n-1}} $ | Iteration Formula | Convergence Rate | Error | Convergence Condition | | ----------------------------------------------------------------------- | ---------------- | ---------------- | -------------------------------- | | $x_{i+1} = x_{i} - \frac{f(x_{i})(x_{i-1}-x_{i})}{f(x_{i-1}-f(x_{i}))}$ | $p \approx 1.6$ | $O(\log \log n)$ | No zero slope regions near zeros |