## Network Modeling
| | Mechanical | Electrical | Fluidic | Thermal |
| ----------- | :----------------: | :-----------------------: | :-------------------------------: | :-------------------------------: |
| Unit | $x$, [m] | $Q$, [C] | $m$, [kg] | $Q$, [J] |
| Potential | $F$, [N] | $V$, [V] | $\Delta P$ [Pa] | $\Delta T$ [K] |
| Flux | $v$, [m/s] | $I$, [A] | ${} q$, [$\text{m}^{3}/\text{s}$] | ${} \dot{Q} {}$, [W] |
| Inertia | ${} F=m\dot{v} {}$ | ${} V=L \frac{di}{dt} {}$ | ${} \Delta P=L \frac{dq}{dt} {}$ | N/A |
| Resistance | ${} F=bv {}$ | ${} V=iR {}$ | ${} \Delta P=qR {}$ | ${} \Delta T = R\cdot \dot{Q} {}$ |
| Capacitance | $F=kx$ | ${} i=C \frac{dV}{dt} {}$ | ${} m = C\Delta P {}$ | $Q=mc\Delta T$ |
| Power | $P = F\cdot v$ | ${} P = V\cdot i {}$ | ${} P = \Delta P \cdot q {}$ | $P = \dot{Q}$ |
## Conservation Laws
### Energy
$
\frac{dE_{\text{cv}}}{dt}=\dot{Q}-\dot{W}+\sum_{\text{in}}\dot{m}_{\text{in}}\left( h+\frac{v^{2}}{2}+gz \right)_{\text{in}}
-\sum_{\text{out}}\dot{m}_{\text{out}}\left( h+\frac{v^{2}}{2}+gz \right)_{\text{out}}
$
$h = u + \frac{P}{\rho}$
### Linear Momentum
$
\sum \vec{F} = m\vec{a}
$
For an inertial control volume:
$
\sum \vec{F} = \frac{d}{dt} \int_{CV}\vec{v} \rho dV + \sum_{out}\dot{m}_{i}\vec{v}_{i} - \sum_{in} \dot{m}_{i} \vec{v}_{i}
$
**Navier Stokes**
$\rho \frac{D\vec{v}}{Dt} = -\vec{\nabla}P + \rho \vec{g} + \mu \nabla^{2} \vec{v}$
**Material Derivative**
$\frac{D}{Dt} = \frac{\delta}{\delta t} + \vec{\nabla} \cdot \vec{v}$
### Angular Momentum
$\sum \vec{\tau}=\frac{d}{dt}(r\times mv)=I\dot{\omega}$
### Entropy
$
\frac{dS_{\text{cv}}}{dt}=\frac{\dot{Q}}{T_{\text{s}}}+\dot{S}_{\text{gen}}+\sum_{\text{in}} \dot{m}_{\text{in}}S_{\text{in}} - \sum_{\text{out}} \dot{m}_{\text{out}} S_{\text{out}}
$