### Kronecker Product
Every element in the first matrix times every element in the second in a certain order
$
\begin{pmatrix}
a_{11} & a_{12} & \dots \\
a_{21} & a_{22} & \dots \\
\vdots & \vdots
\end{pmatrix} ⊗B = \begin{pmatrix}
a_{11}B & a_{12}B & \dots \\
a_{21}B & a_{22}B & \dots \\
\vdots & \vdots
\end{pmatrix}
$
- A is mxn
- B is pxq
- A⊗B is mp x nq
- $A⊗B \neq B⊗A$
**Vectorization**
$\mathrm{vec}\,A=\mathrm{vec}\otimes\underbrace{\left(\begin{array}{c c c c}{{{\vec{a}}_{1}}}&{{{\vec{a}}_{2}}}&{{\cdot\cdot\cdot}}&{{{\vec{a}}_{n}}}\end{array}\right)}_{A\in\mathbb{R}^{m\times n}}=\left(\begin{array}{c}{{{\vec{a}}_{1}}}\\ {{{\vec{a}}_{2}}}\\ {{\vdots}}\\ {{{\vec{a}}_{n}}}\end{array}\right)\in\mathbb{R}^{m n}$
**Matrix Notation**
${} (A⊗B)*\mathrm{vec}~C = \mathrm{vec}(BCA^{T}) {}$
**Linear operator notation**
$(A⊗B)[C] = BCA^{T}$