## Governing Equations for 3D Elastic Bodies
### Equations of Motion
Relates acceleration and forces to stress
$
\sum_{j=1}^{3} \frac{\partial \sigma_{ij}}{\partial x_j} + \rho g_i = \rho a_i \quad \text{for } i = 1,2,3
$
#### Expanded form
$
\begin{align}
\frac{\delta\sigma_{11}}{\delta x}+\frac{\delta\sigma_{12}}{\delta y}+\frac{\sigma_{13}}{\delta z}+\rho g_{1}&=\rho a_{1} \\
\frac{\delta\sigma_{21}}{\delta x}+\frac{\delta\sigma_{22}}{\delta y}+\frac{\sigma_{23}}{\delta z}+\rho g_{2}&=\rho a_{2} \\
\frac{\delta\sigma_{31}}{\delta x}+\frac{\delta\sigma_{32}}{\delta y}+\frac{\sigma_{33}}{\delta z}+\rho g_{3}&=\rho a_{3}
\end{align}
$
### Strain-Displacement Relation
Relates strain and displacement
$
[\underline{\epsilon}]=\frac{1}{2}([\nabla \underline{u}]+[\nabla \underline{u}]^T)
$
### Elastic Constitutive Relation
Relates stress and strain
$
[\underline{\sigma}]=K(\text{tr}\underline{\epsilon})[\underline{1}] + 2G[\underline{\epsilon}']
$
#### Compliance relation
Inverting the above equation
$
\begin{align}
[\underline{\epsilon}]&=\frac{1}{9K}(\text{tr}\underline{\sigma})[\underline{1}]+\frac{1}{2G}[\underline{\sigma}'] \\ \\
&=\frac{1}{E}(-\nu(\text{tr}\underline{\sigma})[\underline{1}] + (1+\nu)[\underline{\sigma}])
\end{align}
$
#### Expanded form
$
\begin{align}
\epsilon_{11} &= \frac{1}{E} (\sigma_{11} - \nu (\sigma_{22} + \sigma_{33})) \\
\epsilon_{22} &= \frac{1}{E} (\sigma_{22} - \nu (\sigma_{33} + \sigma_{11}) )\\
\epsilon_{33} &= \frac{1}{E} (\sigma_{33} - \nu (\sigma_{11} + \sigma_{22}) ) \\
\epsilon_{12} &=\frac{1+\nu}{E}\sigma_{12}\\
\epsilon _{23}&=\frac{1+\nu}{E}\sigma_{23}\\
\epsilon _{31}&=\frac{1+\nu}{E}\sigma_{31}\\
\end{align}
$
## Stress
### Cauchy's Result
$
[\underline{t}(\underline{x},\underline{n})]= [\underline{\sigma}(\underline{x})][\underline{n}]
$
### Stress Tensor
$\underline{\sigma}$: tensor, physical load state, inputs vector $\underline{n}$ and outputs vector $\underline{t}$
$[\underline{\sigma}]$: matrix, representation of $\underline{\sigma}$ in a given basis
$
[\underline{\sigma}] = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{11} & \sigma_{12} & \sigma_{13} \\\end{bmatrix}
$
$
[\underline{\sigma}]=[\underline{\sigma}]^T
$
### Stress Decomposition
$
[\underline{\sigma}]=\sigma_{M}[\underline{1}]+[\underline{\sigma}']
$
#### Spherical Part
Tries to make the material change volume
$
\sigma_{M}= \frac{1}{3}tr(\underline{\sigma})
$
#### Deviatoric Part
Tries to make the material change shape
$
[\underline{\sigma}']= [\underline{\sigma}]-\sigma_{M}[\underline{1}]
$
$
tr([\underline{\sigma}'])=0
$
### Principle Stress
$
[\underline{\sigma}]^P=
\begin{bmatrix}
\sigma_{1}^P & 0 & 0 \\
0 & \sigma_{2}^P & 0 \\
0 & 0 & \sigma_{3}^P
\end{bmatrix}
$
No off-diags, no shear stress
Each of $\sigma_{i}^P$ and $\underline{e}_{i}^P$ are eigenvalue eigenvector pairs of $[\underline{\sigma}]$
### Common Stress States
#### Simple Tension
$
[\underline{\sigma}] = \begin{bmatrix}
0 & 0 & 0 \\
0 & \sigma & 0 \\
0 & 0 & 0
\end{bmatrix}
$
#### Simple Shear
$
[\underline{\sigma}] = \begin{bmatrix}
0 & 0 & \tau \\
0 & 0 & 0 \\
\tau & 0 & 0
\end{bmatrix}
$
#### Hydrostatic Pressure
$
[\underline{\sigma}]=\begin{bmatrix}
-p & 0 & 0 \\
0 & -p & 0 \\
0 & 0 & -p
\end{bmatrix}
$
#### Plane Stress
One of $\sigma_{i}^P=0$
Can simplify to a 2D problem
Does not lead to plane strain in most cases
## Strain
### Displacement Field
$
\underline{u}(\underline{X})=\underline{x}-\underline{X}
$
$
[\nabla u] = \begin{bmatrix}
\frac{\delta u_{1}}{\delta x_{1}} & \frac{\delta u_{1}}{\delta x_{2}} & \frac{\delta u_{1}}{\delta x_{3}} \\
\frac{\delta u_{2}}{\delta x_{1}} & \frac{\delta u_{2}}{\delta x_{2}} & \frac{\delta u_{2}}{\delta x_{3}} \\
\frac{\delta u_{3}}{\delta x_{1}} & \frac{\delta u_{3}}{\delta x_{2}} & \frac{\delta u_{3}}{\delta x_{3}}
\end{bmatrix}
$
### Strain Matrix
$
\begin{align}
[\underline{\epsilon}]&=\frac{1}{2}([\nabla \underline{u}]+[\nabla \underline{u}]^T) \\
\\
&= \begin{bmatrix}
\frac{du_{1}}{dX_{2}} & \frac{1}{2}\left( \frac{du_{1}}{dX_{2}}+\frac{du_{2}}{dX_{1}} \right) & \dots\\
\frac{1}{2}\left( \frac{du_{1}}{dX_{2}} +\frac{du_{2}}{dX_{1}}\right) & \frac{du_{2}}{dX_{2}} & \dots \\
\dots & \dots & \dots
\end{bmatrix}
\end{align}
$
- Strain matrix is symmetric
- Off-diags reflect angle change, diags reflect length change
- Diagonal reflects
- Pure rotations and translations give $[\underline{\epsilon}]=0$
$
\epsilon_{ij}
\begin{cases}
i\neq j : & (\text{angle change between } \underline{e}_{i} \text{ and } \underline{e}_{j})/2 \\
i=j: & \text{relative length change}
\end{cases}
$
$[\underline{\epsilon}]$ relates the dot product from $\underline{a}$ and $\underline{b}$ to $\underline{\alpha}$ and $\underline{\beta}$
$
[\underline{a}]\cdot([\underline{\epsilon}][\underline{b}])=\frac{1}{2}(\underline{\alpha}\cdot\underline{\beta}-\underline{a}\cdot \underline{b})
$
### Decomposing Strain
$
\begin{align}
[\underline{\epsilon}] &= \underbrace{ \frac{1}{3}\text{tr}(\underline{\epsilon})[\underline{1}] }_{ spherical \ part }+ \underbrace{ [\underline{\epsilon}'] }_{ deviatoric \ part } \\ \\
&=\frac{1}{9K}(\text{tr}\underline{\sigma})[\underline{1}]+\frac{1}{2G}[\underline{\sigma}']
\end{align}
$
$
[\underline{\epsilon}']=\frac{1}{3}\text{tr}(\underline{\epsilon})[\underline{1}]-[\underline{\epsilon}]
$
- Deviatoric part causes shape change
- Spherical part causes volume change
### Common Deformations
#### Simple Shear
$
\underline{\epsilon}=\begin{bmatrix}
0 & \frac{\gamma}{2} & 0 \\
\frac{\gamma}{2} & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
$
#### Uniform Compaction
$
\underline{\epsilon}=\begin{bmatrix}
-\frac{\Delta}{3} & 0 & 0 \\
0 & -\frac{\Delta}{3} & 0 \\
0 & 0 & -\frac{\Delta}{3}
\end{bmatrix}
$
$
\text{Volumetric Strain}=tr\underline{\epsilon}= \frac{\text{volume change}}{\text{initial vol}}=-\Delta
$
## Material Properties
### Young's Modulus
Resistance to stretching
$
E = \frac{\sigma_{11}}{\epsilon_{11}}=\frac{9KG}{3K+G}
$
### Shear Modulus
Resistance to shear
$
G=\frac{E}{2(1+\nu)}
$
$
[\underline{\sigma}']=2G[\underline{\epsilon}']
$
### Bulk Modulus
Resistance to volume change
$
K = \frac{E}{3(1-2\nu)}
$
$
\sigma_{m}=3K\epsilon_{m}=K(tr\underline{\epsilon})[\underline{1}]
$
### Poisson's Ratio
Ratio of lateral contraction to longitudinal strain
$
\nu= -\frac{\epsilon_{22}}{\epsilon_{11}}=\frac{3K-2G}{6K+2G}
$
As material becomes incompressible, $\frac{K}{G} \to \infty$ and $\nu\to \frac{1}{2}$
### Lamé Coefficient
$
\lambda=K-\frac{2}{3}G
$
## Stress Concentration
:sob:
### Thick-Walled Cylinders
![[Pasted image 20240519042131.png|400]] ![[Pasted image 20240519042320.png|295]]
Solution after
$
\begin{align}
\sigma_{rr} &= \frac{ p_{i}-p_{o}\left( \frac{b}{a} \right)^{2} - (p_{i}-p_{o})\left( \frac{b}{r} \right) ^{2}}{\left( \frac{b}{a} \right)^{2}-1}
\\
\sigma_{\theta\theta} &= \frac{ p_{i}-p_{o}\left( \frac{b}{a} \right)^{2} +(p_{i}-p_{o})\left( \frac{b}{r} \right) ^{2}}{\left( \frac{b}{a} \right)^{2}-1}
\\
\sigma_{zz} &= \frac{ 2\nu\left( p_{i}-p_{o}\left( \frac{b}{a} \right)^{2} +E\epsilon_{zz} \right)}{\left( \frac{b}{a} \right)^{2}-1}
\end{align}
$
$
u_{r} = \frac{1+\nu}{E} \frac{r}{\left( \frac{b}{a} \right)^{2}-1}((1-2\nu)\left( p_{i}-p_{o}\left( \frac{b}{a} \right)^{2} \right)+(p_{i}-p_{o})\left( \frac{b}{r}^{2} \right)) - \nu r\epsilon_{0}
$
### Stress Concentration Factor
### Failure Criterion
### Von Mises
$
\sqrt{ \frac{3}{2} }\sqrt{ (\sigma_{1}')^{2}+(\sigma_{2}')^{2}+(\sigma_{3}')^{2} }=\bar{\sigma}\leq\sigma _{y}
$
$
\bar{\sigma}=\sqrt{ \frac{1}{2}((\sigma_{11}-\sigma_{22})^{2}+(\sigma_{22}-\sigma_{33})^{2}+(\sigma_{11}-\sigma_{33})^{2})+3(\sigma_{12}^{2}+\sigma_{23}^{2}+\sigma_{13}^{2}) }
$
### Tresca
$
f([\underline{\sigma}])=\frac{\sigma_{1}^P-\sigma_{2}^P}{2}=\tau_{max}\leq \frac{\sigma_{y}}{2}=\tau_{y,\text{tresca}}
$
$\tau_{max}$ is maximal shear stress
$\tau_{max}=\text{max}|\underline{m}\cdot (\underline{\sigma} \underline{n})|$
$\underline{m}\perp \underline{n}$
### Fast Fracture
Fast fracture occurs when
$
\sigma_{1}^P\leq\sigma_{c}=\text{Critical Fracture Stress}
$
We use $\sigma_{1}^P$ not von mises because micro cracks are so small that only local tension is relevant
## Large Deformations
### Stretch
Alternative way of expressing strain that is more convenient for large deformations
$
\lambda_{i}=\frac{dx_{i}}{dX_{i}}
$
![[Pasted image 20240328140355.png|350]]
### Volume Ratio
$
J=\frac{\text{deformed volume}}{\text{original volume}} =\frac{dx_{1}dx_{2}dx_{3}}{dX_{1}dX_{2}dX_{3}}=\lambda_{1}\lambda_{2}\lambda_{3}
$
If incompressible: $J=1$
### Strain-Energy Density
$
\psi(\lambda_{1},\lambda_{2},\lambda_{3},{\text{material properties}}) =\frac{\text{energy stored}}{\text{original volume}} =S_{1}\dot{\lambda}_{1}+S_{2}\dot{\lambda}_{2}+S_{3}\dot{\lambda}_{3}
$
### Engineering Stress
$
S = \frac{F}{A_{0}}=\frac{ \partial \psi }{ \partial \lambda}
$
### Engineering Strain
$
e = \frac{L-L_{0}}{L_{0}}=\lambda-1
$
### True Stress
$
\sigma = \frac{F}{A} = \frac{\lambda}{J} \frac{ \partial \psi }{ \partial \lambda} =s(1+e)
$
### True Strain
$
\epsilon =\ln \frac{L}{L_{0}} = \ln(1+e)
$
### Incompressible Rubber Constitutive Relation
Due to incompressibility, arbitrary hydrostatic pressure $p$ does no work ($\psi$ is unaffected) and $J=\lambda_{1}\lambda_{2}\lambda_{3}=1$
$
\sigma_{i}=\lambda_{i}\frac{ \partial \psi }{ \partial \lambda i } -p
$
### Neo-Hookean
Simplest and most common strain-energy function for rubber
$
\psi_{\text{NH}} = C\cdot (\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}-3)
$
$C$ can be determined from a small deformation stretch or shear test: $C = \frac{E}{6}=\frac{G}{2}$
Experiments show that rubber is stiffer than neo-hookean beyond $\lambda=1.5$
### Stretch Invariants
Constants that are unaffected by rotation
$
\begin{align}
I_{1} &=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2} \\
I_{2}&=\lambda_{1}^{2}\lambda_{2}^{2}+\lambda_{2}^{2}\lambda_{3}^{2}+\lambda_{1}^{2} \lambda_{3}^{2} \\
I_{3}&= \lambda_{1}^{2}\lambda_{2}^{2}\lambda_{3}^{2}
\end{align}
$
### Other Material Models
Neo-Hookean: $\psi=C\cdot(I_{1}-3)$
Mooney-Rivlin: $\psi = C_{1} \cdot (I_{1}-3) + C_{2}\cdot(I_{2}-3)$
## Viscoelasticity
### Math functions
#### Heaviside function
$
h(t) =\begin{cases}
0 & t\leq 0 \\
1 & t>0
\end{cases}
$
#### Dirac function
$
\delta(t) = \dot{h}(t) = \begin{cases}
0 & \text{for } t \neq 0 \\
\infty & \text{for } t=0
\end{cases}
$
$
\int_{-\infty}^{\infty} \delta(t) \, dt=1
$
For any function $g(t)$, continuous at $t=0$:
$
\int_{-\infty}^{\infty} g(t)\delta(t) \, dt=g(0)
$
### Material Properties
#### Relaxation time
$
\tau_{R} = \frac{\eta}{E_{2}}
$
$\eta=\text{viscosity}$
#### Creep retardation time
$
\tau_{C} = \frac{E_{1}+E_{2}}{E_{1}}\tau_{R}
$
### Standard Linear Solid
Model for viscoelastic behavior consisting of springs and dampers
$
(\eta+E_{1}\tau_{R})\dot{\epsilon}-\tau_{R}\dot{\sigma}=\sigma-E_{1}\epsilon
$
![[Pasted image 20240416173556.png|250]]
### Stress Relaxation
Stress spikes and relaxes over time when a sudden strain is applied: $\epsilon=\epsilon_{0}h(t)$
e.g. clamping in a vice
$
\begin{align}
E_{r}(t) &=\frac{\sigma(t)}{\epsilon_{0}} = E_{2}e^{-t/\tau_{R}} + E_{1} \\
&=E_{\text{re}}+(E_{\text{rg}}+E_\text{re})e^{-t/\tau_{R}}
\end{align}
$
### Creep
How a material elongates over time after application of sudden stress: $\sigma = \sigma_{0}h(t)$
e.g. hanging a weight
$
\epsilon(t)=C e^{-t/\tau_{C}} + \frac{\sigma_{0}}{E_{1}}
$
$
J_{c}(t) = \frac{\epsilon(t)}{\sigma_{0}} = \left( \frac{1}{E_{1}+E_{2}}-\frac{1}{E_{1}} \right)e^{-t/\tau_{C}}+\frac{1}{E_{1}}
$
### Boltzmann Superposition Principle
Relates stress history and strain history
#### Discrete form
Input:
$
\sigma(t)=\sum_{i=1}^n h(t-t_{i})\Delta\sigma_{i}
$
Output:
$
\epsilon(t) = \sum_{i=1}^N J_{c}(t-t_{i})\Delta\sigma_{i}
$
#### Stress relaxation integral form
Input:
$
\epsilon(t) = \int _{0^-}^t h(t-\tau)\frac{d\sigma(\tau)}{d\tau} \, d\tau
$
Output:
$
\sigma(t)=\int _{0^-}^t E_{r}(t-\tau) \frac{d\epsilon(t)}{d\tau} \, d\tau
$
#### Creep integral form
Input:
$
\sigma(t) = \int _{0^-}^t h(t-\tau)\frac{d\epsilon(\tau)}{d\tau} \, d\tau
$
Output:
$
\epsilon(t)=\int _{0^-}^t J_{r}(t-\tau) \frac{d\sigma(\tau)}{d\tau} \, d\tau
$
### Correspondence Principle
Pretend body is elastic and replace $J$ with $J_{c}$ or replace $E$ with $E_{r}$
$
\underline{u}(\underline{x},t) = \underline{u}_{0}(\underline{x})\cdot \frac{J_{c}(t)}{J}
$
$
\underline{\sigma}(\underline{x},t) = \underline{\sigma}_{0}(\underline{x})\cdot \frac{E_{r}(t)}{E}
$
### Dynamic Mechanical Analysis (DMA)
Viscoelastic response to oscillatory inputs
#### Stress Input
Stress Input:
$
\sigma(t) = \sigma_{0}\cos \omega t
$
Strain Output:
$
\begin{align}
\epsilon(t) &= \epsilon_{0}\cos(\omega t-\delta) \\
&=\sigma_{0} (J' \cos(\omega t)+J''\sin(\omega t))
\end{align}
$
![[Pasted image 20240408112504.png|425]]
#### Strain Input
Strain Input:
$
\epsilon(t) = \epsilon_{0}\cos\omega t
$
Stress Output:
$
\begin{align}
\sigma(t) &= \sigma_{0}\cos(\omega t-\delta) \\
&=\epsilon_{0}(E'\cos(\omega t) -E''\sin(\omega t))
\end{align}
$
#### Material Properties
##### Loss Angle
Phase lag of DMA, depends on frequency and temp: $\delta=\delta(\omega,T)$
Fully out of phase if $\delta=\frac{\pi}{2}$
##### Loss Tangent
$
\tan\delta = \frac{J''}{J'}=\frac{E''}{E'}
$
##### Storage compliance
Measure of how in-phase the strain is with the stress, function of $\omega$
$
J' = \frac{\epsilon_{0}}{\sigma_{0}}\cos\delta
$
##### Loss compliance
Measure of how out-of-phase the strain is with the stress, function of $\omega$
$
J'' = \frac{\epsilon_{0}}{\sigma_{0}}\sin\delta
$
##### Storage modulus
Represents rate of energy absorbed by material
$
E' = \frac{\sigma_{0}}{\epsilon_{0}}\cos\delta
$
##### Loss modulus
Represents rate of energy dissipated by material
$
E'' = \frac{\sigma_{0}}{\epsilon_{0}}\sin\delta
$
#### Loss per cycle
Power expended per volume:
$
\begin{align}
P &= \sigma \dot{\epsilon} \\
&=-\omega\sigma_{0}\epsilon_{0}\sin(\omega t)\cos(\omega t+\delta)
\end{align}
$
Work done in one cycle with period $T=\frac{2\pi}{\omega}$ (dissipation loss per cycle):
$
\begin{align}
W&=\int _{0}^T P \, dt \\
&=\pi\sigma_{0}\epsilon_{0}\sin\delta \\
&=\pi\sigma_{0}^{2}J'' \\
\end{align}
$
Dissipation depends on $\delta, E'', \text{and } J''$
![[Pasted image 20240416180522.png|375]]
## Plasticity
### True Strain and Stress
In plasticity we use true strain and stress:
$\epsilon = \ln \frac{L}{L_{0}}= \ln(1+e)$
$\sigma = \frac{P}{A} = s(1+e)$
$s = \frac{P}{A_{0}}$
$e = \frac{L}{L_{0}}-1$
### Metal Plasticity
Due to motion of dislocations (as opposed to stretching bonds)
- Incompressible
- Unaffected by hydrostatic pressure
#### Hall-Petch Relation
Grain boundaries inhibit dislocation motion. Smaller grains are stronger.
$
\sigma_{y} = \sigma_{0} +\frac{k}{\sqrt{ D }}
$
$\sigma_{0} =$ "large grain" yield strength
$k = \text{fit parameter}$
$d = \text{grain size}$
### Assumptions
Elastic-Perfectly-Plastic: No strain hardening
Rigid-Plastic: No elastic deformation
Rigid-Perfectly-Plastic: No elastic deformation or strain hardening
### Elastic-Plastic Stress-Strain Response
![[Pasted image 20240518165338.png|300]]
### Elastoplasticity
Stress is independent of strain rate in metals when $T<0.35T_{m}$ (melting point in K)
| | 1D | 3D |
| --------------------------------- | --------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- |
| Kinematic decomposition of strain | $\epsilon = \epsilon^{e} + \epsilon^{p}$ | $\underline{\epsilon}=\underline{\epsilon}^{e} + \underline{\epsilon}^{p}$ |
| Elastic constitutive relation | $\sigma = E\epsilon^{e}$ | $\underline{\sigma}=2G(\underline{\epsilon}^{e})'+K(\text{tr}\underline{\epsilon})\underline{I}$ |
| Equivalent tensile plastic strain | $\bar{\epsilon}^{p} =\int \lvert \dot{\epsilon}^{p} \rvert\, dt$ | $\bar{\epsilon}^{p}= \int \sqrt{ \frac{2}{3} } \cdot\lvert \dot{{\underline{\epsilon}}}^{p} \rvert\\ \, dt$ |
| Yield Condition | $\lvert \sigma \rvert = Y(\bar{\epsilon}^{p})$ | $\bar{\sigma} = Y(\bar{\epsilon}^{p})$ |
| Codirectionality | $\text{sign}(\sigma) = \text{sign}(d\epsilon^{p})$ | $\text{sign}(\underline{\sigma}') = \text{sign}(d \underline{e}^{p})$ |
| Flow Rule | $\dot{\epsilon}^{p} = \dot{\bar{\epsilon}}^{p} \frac{\sigma}{\bar{\sigma}}$ | $\underline{\dot{\epsilon}}^{p}=\frac{3}{2}\dot{\bar{\epsilon}}^{p}\frac{\underline{\sigma}'}{\bar{\sigma}}$ |
$\underline{\dot{\epsilon}}^{p} = \text{strain rate tensor}$
$\dot{\bar{\epsilon}}^{p} = \text{equivalent strain rate}$
$\bar{\sigma}= \text{von mises stress}$
$\underline{\sigma}' = \text{deviatoric stress state}$
$\lvert \underline{A} \rvert = \sqrt{ \sum_{ij} A_{ij}^{2} }$
$\text{sign}(\underline{A}) = \frac{\underline{A}}{\lvert \underline{A} \rvert }$
#### Incremental Form
When you know the stress state, you can calculate the strain state as follows:
$
d\epsilon_{ij} = d\epsilon_{ij}^{e} + d\epsilon_{ij}^{p} = \underbrace{
\frac{1}{E}((1+\nu)d\sigma_{ij}
-\nu d\sigma_{kk}\delta_{ij})
}_{ d\epsilon_{ij}^{e} }
+\underbrace{
\frac{3}{2}d\bar{\epsilon}^{P}\frac{\sigma_{ij}'}{\bar{\sigma}}
}_{ d\epsilon_{ij}^{p} }
$
or
$
\dot{\epsilon}=
\frac{1}{E}((1+\nu)\dot{\sigma}
-\nu ~\text{tr}(\dot{\sigma})\underline{1})
+
\frac{3}{2}\dot{\bar{\epsilon}}^{p}\frac{\sigma'}{\bar{\sigma}}
$
#### Analog Model
![[Pasted image 20240518224943.png|300]]
Slider has static friction $\sigma _y$ and Mr. Plasticity adds weights to it every time it moves (strain hardening).
### Viscoplasticity
Metals exhibit viscoplasticity when $T>0.35T_{m}$ due to atomic diffusion affecting plastic flow
- No yield strength: $\dot{\bar{\epsilon}}^{p} \neq 0$ whenever $\bar{\sigma} \neq 0$
- hot metals experience creep and stress relaxation
- material response becomes rate dependent
#### New Flow Rule:
$
\dot{\bar{\epsilon}}^{p}=\dot{\epsilon}_{0}\left( \frac{\bar{\sigma}}{S} \right)^{1/m}
$
If $T>0.5 T_{m}$, then we have
$
\dot{\epsilon}_{0}= A e^{-Q/RT}
$
$m =$ strain rate sensitivity parameter, $0<m<1$
$\dot{\epsilon}_{0} =$ reference strain rate
$S =$ flow strength (like Y)
#### Isothermal tensile loading:
$
\dot{\epsilon} = \dot{\epsilon}^{e} + \dot{\epsilon}^{p} = \frac{\dot{\sigma}}{E} + B\sigma^{n} = \frac{\dot{\epsilon}_{0}}{S^{n}}
$
#### Analog Model
![[Pasted image 20240506104915.png|400]]
$
\dot{\bar{\epsilon}}^{p}=\dot{\epsilon}_{0}\left( \frac{<\bar{\sigma}-Y_{th}(\bar{\epsilon}^{P})>}{S} \right)^{1/m}
$
$
<u> = \begin{cases}
u & \text{if } u\geq0 \\
0 & \text{if } u<0
\end{cases}
$
$Y_{th}(\bar{\epsilon}^{p}) =$ threshold resistance
## Fracture
### Stress Intensity Factor
$K_{I}$ is determined by geometry and loading conditions
$
K_{I} = Q \sigma_{\infty}\sqrt{ \pi a }
$
$Q=$ configuration factor, $Q=1$ for infinite plate
$a=$ crack radius, $2a =$ crack width
$\sigma_{\infty} =$ stress applied perpendicular to crack
### Critical Stress Intensity factor
$K_{IC}$ is a function of material properties
$
K_{IC} = \sigma_{c}\sqrt{ \frac{\pi a_{0}}{2} }
$
$a_{0} =$ lattice spacing of atoms
$\sigma_{c} =$ critical stress
Crack propagates when $K_{I} = K_{IC}$ (if factor of safety, then $K_{I} = \frac{K_{IC}}{FoS}$)
$K_{I}=K_{Ic}$ only if $r_{Ic} \ll \{a, (w-a), B, h\}$
### Critical Stress
$
\sigma_{c} = 2\sqrt{ \frac{a}{a_{0}} } \sigma^{\infty }
$
$a_{0} =$ lattice spacing of atoms
### Local Stress
$
t(r_{k},\theta) = \frac{K_{I}}{\sqrt{ 2\pi r }}[f(\theta)] \cdot \hat{\underline{n}}
$
$
\sigma_{22}(r,\theta=0) = \frac{K_{I}}{\sqrt{ 2\pi r }} \leq \sigma_{y}
$
$\sigma_{22} =$ stress component that tries to open the crack
### Small Scale Yielding Condition
The plastic deformation zone radius is given by
$
r_{Ip} = \frac{1}{2\pi}\left( \frac{K_{I}}{\sigma_{y}} \right)^{2}
$
For linear elastic fracture mechanics to apply, specimen dimensions much be much greater than $r_{Ip}$:
$
\{ a, w-a, h, B \} > 15r_{Ip}
$
![[Pasted image 20240519014614.png|300]]
#### Superposition
By linearity, we can superpose loading conditions and stress intensity factors:
$
\sigma_{\infty} =\sigma_{\infty,1} + \sigma_{\infty,2} + \sigma_{\infty,3} + \dots + \sigma_{\infty, n}
$
$
K_{I} = K_{I,1} + K_{I,2} + K_{I, 3} + \dots + K_{I,n}
$
$
K_{Ic} = \sum_{i=1}^{n}K_{I,i}
$
## Fatigue
Failure of a structure due to repeated cyclic loading that causes local plastic deformation
![[Pasted image 20240519023924.png|300]]
$\sigma_{a} =$ stress amplitude
$\Delta\sigma = \sigma _\text{max} - \sigma _\text{min} =$ stress range
$\sigma_{m} =$ mean stress
### Defect-Free Approach
Estimate number of cycles until crack is initiated, then assume failure is immediate
#### S-N Curves
Empirically determined plot of stress amplitude vs number of cycles to failure
![[Pasted image 20240519024026.png|300]]
Endurance limit: some metals have a value $S=\sigma_{a}$ such that $N_{f}\to \infty$
Pseudo-endurance limit: $\sigma_{a}$ corresponding to $N_{f}=10^{7}$
#### Strain-Life
Uses strain amplitude instead of stress amplitude to better model plastic deformations where failure occurs after only a few cycles
$
\epsilon_{a} = \underbrace{ \frac{\sigma_{f}'}{E}(2N_{f})^{b} }_{ \text{Basquin} } +
\underbrace{ \epsilon_{f}' \cdot(2N_{f})^{c} }_{ \text{Coffin-Manson }}
$
High cycle fatigue — Basquins' Relation ($N_{f} > 10^{4} \text{ cycles}$)
Low-cycle fatigue — Coffin-Manson relation ($N _{f}< 10^{4} \text{ cycles}$)
$\sigma_{f}', \epsilon_{f}', b, c =$ material parameters
### Defect-Tolerant Approach
Assume a crack of initial size $a_{i}$ exists at the most highly stressed location
$a_{i}$ is set to either the largest measured crack or the minimum crack size that can be reliably measured
#### Critical crack size
Crack length that allows fracture to occur at maximum stress
$
a_{c} =\frac{1}{\pi}\left( \frac{K_{Ic}}{Q\sigma _\text{max}} \right)^{2}
$
$a_{c} =$ critical crack size
### Fatigue Crack Growth
$
\Delta K_{I} = Q(\sigma _\text{max} - \sigma _\text{min})\sqrt{\pi a }
$
$\Delta K_{I} =$ stress intensity range
$\frac{da}{dN} =$ crack growth rate
![[Pasted image 20240519032836.png|375]] ![[Pasted image 20240519032311.png|300]]
- Low $\Delta K_{I}$: Cracks don't grow beneath a threshold $\Delta K_{Ith}$
- Moderate $\Delta K_{I}$: Power law fit between $\frac{da}{dN}$ and $\Delta K_{I}$
- High $\Delta K_{I}$: Fracture occurs in a few cycles
#### Paris's Law
$
\frac{da}{dN} = \begin{cases}
0 & \text{if } \Delta K_{I}< \Delta K_{Ith} \\
C(\Delta K_{I})^{m} & \text{if } \Delta K_{I} > \Delta K_{Ith}
\end{cases}
$
$C, m =$ experimentally determined material constants
So in the moderate $\Delta K_{I}$ region we have
$
\frac{da}{dN} =C[Q(\sigma _\text{max} - \sigma _\text{min})\sqrt{ \pi a }]^{m}
$
Integrating gives us
If $m \neq 2$:
$
N_{f} = \frac{2}{(m-2)C(Q\Delta\sigma\pi)^{m}}[a_{i}^{(2-m)/2}-a_{f}^{(2-m)/2}]
$
If $m=2$:
$
N_{f}=\frac{1}{C} \frac{1}{(Q\Delta\sigma \sqrt{ \pi })^{2}}\left[ \ln\left( \frac{a_{f}}{a_{i}} \right) \right]
$