lt;br>$\mathrm{Re}_{x,c} \leq \mathrm{Re}_{L} \leq 10^{8}$ | $\overline{Nu}_{x} = (0.037 \mathrm{Re}_{x}^{4/5} - A) \mathrm{Pr}^{1/3}$ | ### Natural Convection No forced / defined bulk flow velocity, so we cannot use Reynold's number Instead use Rayleigh number: $\mathrm{Ra} = \mathrm{Gr}\times \mathrm{Pr}=\frac{\text{Buoyancy}}{\text{viscosity}}\times\frac{\text{momentum diffusivity}}{\text{thermal diffusivity}}$ $Nu = f(\mathrm{Ra},\mathrm{Pr})$ ### Internal Flows Laminar, fully developed flow → $\mathrm{Nu}= \begin{cases}\text{constant heat flux } \mathrm{ q''}: & 4.36\\ \text{constant wall }T_{s}: & 3.66\end{cases}$ $\Delta T = T_{s}-T_{b}$, where $T_{b}$ is a chosen "bulk mean temperature" analogous to $v_{\text{avg}}$ $\dot{Q} = hA\Delta T_{mean}$ where $\Delta T_{mean}$ is the mean of the temperature difference which logarithmically decays across the length of the pipe $\Delta T_{mean} = \frac{\Delta T_{1}-\Delta T_{2}}{\ln(\Delta T_{1})-\ln\Delta (T_{2})}$ ![[Pasted image 20250516235942.png]] ![[Pasted image 20250517000532.png]] ###### Fully developed flow through a circular tube | Flow Type | Condition | Correlation | | ----------------------- | ----------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------- | | Turbulent (Internal) | $0.7 \leq \mathrm{Pr} \leq 160lt;br>$\mathrm{Re}_D > 10,\!000lt;br>$L/D \geq 10$ | $\mathrm{Nu}_D = 0.023 \mathrm{Re}_D^{4/5} \mathrm{Pr}^{n}lt;br>$n = 0.3$ for cooling, $n = 0.4$ for heating | | Turbulent (Sieder-Tate) | $0.7 \leq \mathrm{Pr} \leq 16,\!700lt;br>$\mathrm{Re}_D > 10,\!000lt;br>$L/D \geq 10$ | $\mathrm{Nu}_D = 0.027 \mathrm{Re}_D^{4/5} \mathrm{Pr}^{1/3} \left( \frac{\mu}{\mu_s} \right)^{0.14}$ | | Turbulent (Gnielinski) | $0.5 \leq \mathrm{Pr} \leq 2000lt;br>$3,\!000 \leq \mathrm{Re}_D \leq 5 \times 10^6$ | $\mathrm{Nu}_D = \frac{(f/8)(\mathrm{Re}_D - 1000)\mathrm{Pr}}{1 + 12.7(f/8)^{1/2}(\mathrm{Pr}^{2/3} - 1)}$ | ## Fins ### Heat Transfer from a Fin **Maximum possible heat transfer** (if the entire fin were at base temperature): $Q_{\text{max}} = h A_f (T_b - T_\infty)$ **Actual heat transfer** depends on geometry and tip condition. For example, for an adiabatic tip: $Q_f = \sqrt{hPkA_c} (T_b - T_\infty) \tanh(mL)$ **Fin efficiency** (how well a fin performs compared to ideal): $\eta_f = \frac{Q_{\text{actual}}}{Q_{\text{max}}}$ ### Fin Resistance - Fin resistance (includes efficiency): $R_f = \frac{1}{\eta_f h A_f}$ ### Fin Parameter and Definitions Fin parameter: $m = \sqrt{\frac{hP}{kA_c}}$ - Fin surface area: $A_f$ Fin perimeter: $P$ Cross-sectional area: $A_c$ - Modified fin heat transfer term: $M = h P k A_c (T_b - T_\infty)$ ### Efficiency Expressions (Special Cases) - Infinite fin: $\eta_f = \frac{1}{mL}$ - Adiabatic tip: $\eta_f = \frac{\tanh(mL)}{mL}$ ### Governing Equation and Solution - 1D conduction + convection (steady state): $\frac{d^2 \theta}{dx^2} - m^2 \theta = 0$, where $\theta(x) = T(x) - T_\infty$ - General solution: $\theta(x) = A e^{mx} + B e^{-mx}$ - With adiabatic tip boundary condition: $\frac{d\theta}{dx}\big|_{x=L} = 0$ - With prescribed tip temperature: $\theta(L) = \theta_L$ ### Heat Transfer Rate (Adiabatic Tip) - Heat conducted at base: $Q_f = \sqrt{hPkA_c} (T_b - T_\infty) \tanh(mL)$ - Can also be written: $Q_f = M \tanh(mL)$ #### Fin Tip Conditions | Tip Condition | Temperature Distribution $\theta(x)/\theta_b$ | Fin Heat Transfer Rate $Q_f$ | |------------------------|---------------------------------------------------------------------------|--------------------------------------------| | Infinite fin | $\theta(x)/\theta_b = e^{-mx}$ | $Q_f = M$ | | Adiabatic tip | $\theta(x)/\theta_b = \frac{\cosh(m(L-x))}{\cosh(mL)}$ | $Q_f = M \tanh(mL)$ | | Prescribed temp at tip | $\theta(x)/\theta_b = \frac{\sinh(mL) + \sinh(m(L-x))}{\sinh(mL)}$ | $Q_f = M \left(\frac{\cosh(mL) - 1}{\sinh(mL)}\right)$ | Where: - $\theta(x) = T(x) - T_\infty$ - $\theta_b = T_b - T_\infty$ - $m = \sqrt{\frac{hP}{kA_c}}$ - $M = \sqrt{hPkA_c} (T_b - T_\infty)$ ## Heat Exchangers Chapter 11, [[incropera.pdf]] ### Heat Exchanger Variants A heat exchanger transfers heat between two fluids without mixing them Parallel-flow vs counterflow ![[Pasted image 20250414112154.png|300]] ![[Pasted image 20250414112225.png|325]] Crossflow: ![[Pasted image 20250414112442.png|625]] ### 1st Law $\dot{Q}_{H} = (\dot{m}c_{p})_{H}\Delta T_{H}$ $\dot{Q}_{C}=(\dot{m}c_{p})_{C}\Delta T_{C}$ $\dot{Q}_{H}=\dot{Q}_{C}$ ### LMTD Method - all four inlet and outlet temps are known - you want to find required heat exchanger area $\dot{Q} = UA \Delta T_{\text{LM}}$ $U =$ overall heat transfer coeff $A =$ heat transfer surface area ${} \Delta T_{LM} =$ log mean temperature difference $\Delta T_{LM} = \frac{\Delta T_{1}-\Delta T_{2}}{\ln(\Delta T_{1}/\Delta T_{2})}$ | Type | $\Delta T_{1}$ | $\Delta T_{2}$ | | ------------- | ----------------------- | ----------------------- | | Parallel Flow | ${} T_{h,i}-T_{c,i} {}$ | ${} T_{h,o}-T_{c,o} {}$ | | Counterflow | ${} T_{h,i}-T_{c,o} {}$ | $T_{h,o}-T_{c,i}$ | For crossflow and shell-and-tube, use a correction factor $F$ from charts: $\Delta T_{LM,eff} = F \cdot \Delta T_{LM}$ ### Effectiveness-NTU Method - Heat exchanger effectiveness is known - Missing some fluid temperatures - You want to solve for required area or UA 1. Find heat capacity rates $C~\mathrm{[W/K]}$ $C = \dot{m}c_{p}$, $C_\text{min}=\text{min}(C_{c},C_{h})$, $C_\text{max}=\text{max}(C_{c},C_{h})$, $C_{r}=\frac{C_\text{min}}{C_\text{max}}$ 2. Determine $q_\text{max}$ $q_{\text{max}} = C_\text{min}(T_{h,i}-T_{c,i})$ 3. Determine effectiveness $\epsilon$ from charts $\varepsilon = \frac{\dot{Q}_\text{actual}}{\dot{Q}_{\text{max}}} = f\left( \mathrm{NTU}, \frac{C_\text{min}}{C_\text{max}} \right)$ 4. Determine ${} Q_{\text{actual}}$ from effectiveness $Q_{\text{actual}}=\varepsilon Q_{\text{max}}$ 5. Use $\varepsilon$-NTU relations to determine Number of Transfer Units $\mathrm{NTU} = \frac{UA}{C_\text{min}}$ 6. Solve for UA or required area High NTU = high heat transfer for a given minimum heat capacity rate ![[Pasted image 20250414121113.png]] | Heat Exchanger Type | $\varepsilon$ Formula | NTU as a function of $\varepsilon$ | | ------------------------------------------------------------ | ------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------- | | Counterflow | $\varepsilon = \frac{1 - e^{-\text{NTU}(1 - C_r)}}{1 - C_r e^{-\text{NTU}(1 - C_r)}}$ | ${} \mathrm{NTU} = \frac{1}{C_{r}-1}\ln\left( \frac{\varepsilon-1}{\varepsilon C_{r}-1} \right) {}$ | | Parallel flow | $\varepsilon = \frac{1 - e^{-\text{NTU}(1 + C_r)}}{1 + C_r}$ | $\text{NTU} = -\frac{\ln(1 - \varepsilon (1 + C_r))}{1 + C_r}$ | | Crossflow:<br>$C_\text{max}$ mixed<br>$C_\text{min}$ unmixed | ${} \varepsilon = \frac{1}{C_{r}}(1-e^{-C_{r}(1-e^{-C_{r}(\mathrm{NTU})})}) {}$ | ${} \mathrm{NTU} = -\ln\left( 1 + \frac{1}{C_{r}}\ln(1-\varepsilon C_{r}) \right) {}$ | | Crossflow:<br>$C_\text{max}$ unmixed<br>$C_\text{min}$ mixed | ${} \varepsilon = 1-e^{-\mathrm{NTU}} {}$ | $Q\mathrm{NTU}=-\frac{1}{C_{r}}\ln(C_{r}\ln(1-\varepsilon)+1)$ | ![[Pasted image 20250421183147.png]]