## Pure Substance Model
A pure substance is a system which is *uniform* and *invariable in chemical composition*
Only consider the following:
- Energy exchange via heat transfer
- Work transfer through $PdV$
Quality factor is the ratio of vapor mass to total saturated mixture mass
$x = \frac{m_{g}}{m_{f}+m_{g}}$
If you know any two intensive properties, you can solve for quality factor and everything else (State principle)
$x = \frac{v-v_{f}}{v_{fg}}=\frac{u-u_{f}}{u_{fg}}=\frac{h-h_{f}}{h_{fg}}=\frac{s-s_{f}}{s_{fg}}$
### P-V Diagram
![[P-V-phase-diagram-the-dashed-line-represent-isotherms.png|425]]
### T-V Diagram
![[Pasted image 20250517001827.png|300]]
### P-T Diagram
![[Pasted image 20250407005849.png|525]]
### T-S
![[Pasted image 20250406141948.png|525]]
https://demonstrations.wolfram.com/TemperatureEntropyDiagramForWater/
### H-S
![[Pasted image 20250406141652.png|525]]
https://demonstrations.wolfram.com/EnthalpyEntropyDiagramForWater/
### Ideal Gas
![[PV-Processes.png]]
### Interpolation for dummies
$y = y_\text{low} + \underbrace{ \frac{y_\text{high}-y_\text{low}}{x_{\text{high}}-x_\text{low}} }_{ \text{slope} }\cdot (x-x_{\text{low}})$
## Boiling
Chapter 13 of [[reader_006.pdf]]
Chapter 10 of [[incropera.pdf]]
### General Approach
1. Determine regime
2. Apply appropriate correlation
3. Calculate $\mathrm{Nu}$ and $h_\text{eff}$
### Pool Boiling
Plot heat flux against superheat temperature, which is defined as
$\Delta T_{e}=T_{s}-T_\text{sat}$
![[Pasted image 20250418132855.png|425]]
#### Natural Convection Boiling
- Occurs near saturation temperature
- Minimal superheat
- Heat transfer via convection
- End of this region marked by *onset of nucleate boiling (ONB)*
#### Nucleate Boiling
- Surface superheat causes bubbles to form at nucleation sites
- Jets form at point $B$, $h$ peaks at point $P$
- Very efficient heat transfer
- Most systems operate in this regime
###### Critical Heat Flux (CHF)
Peak $q''$ on the boiling curve
$q''_{\text{crit}} = C \cdot h_{fg} \cdot \rho_v \cdot \left( \frac{\sigma g (\rho_l - \rho_v)}{\rho_v^2} \right)^{1/4}$
Typical value: $C \approx 0.131$ for large horizontal cylinders
###### Bubbles
Bubble diameter is derived from buoyancy force and surface tension
$D_{b}\propto \sqrt{ \frac{\sigma}{g(\rho_{l}-\rho_{v})} }$
$\sigma =$ surface tension (N/m)
Characteristic velocity is found to by dividing diameter by the time it takes to fill the space behind it: $V \propto \frac{q''_{s}}{\rho_{l}h_{fg}}$
Together with $\overline{Nu}_{L}=C_{fc}R_{L}^{m}Pr^{n}$ we find the following nucleate boiling correlation:
$q''_{s}=\mu_{l}h_{fg}\left( \frac{g(\rho_{l}-\rho_{v})}{\sigma} \right)^{1/2}\left( \frac{c_{p,l}\Delta T_{e}}{C_{s,f}h_{fg}\mathrm{Pr}^{n}_{l}} \right)^{3}$
See table for $C_{s,f}$ and $n$ values[^1], but generally $C_{s,f}\approx 1$ and $n=1$
#### Transition Boiling
- Unstable regime between nucleate and film boiling
- Heat flux drops as vapor patches form
#### Film Boiling
- Entire surface covered by vapor blanket
- Heat transfer drops significantly due to vapor insulation
Film boiling on a cylinder or sphere, with $C=0.62$ for horizontal cylinders and $C=0.67$ for sphers
$\overline{Nu}_{D} = C \left( \frac{g(\rho_{l}-\rho_{v})h_{fg}'D^{3}}{v_{v}k_{v}(T_{s}-T_{\text{sat}})} \right)^{1/4}$
$h'_{fg}=h_{fg}+0.80c_{p,v}(T_{s}-T_{\text{sat}})$
At surface temperatures greater than $300°C$, radiation is significant:
${} \bar{h}^{4/3}=\bar{h}^{4/3}_{\text{conv}}+\bar{h}_{\text{rad}}\bar{h}^{1/3} {}$
$\bar{h}_\text{rad}=\frac{\varepsilon\sigma(T_{s}^{4}-T_\text{sat}^{4})}{T_{s}-T_\text{sat}}$
$\varepsilon =$ emissivity
$\sigma =$ Stefan-Boltzmann constant
### Forced Boiling
[^1]: Nucleate boiling correlations
![[Pasted image 20250418143100.png|300]]
## Condensation
Chapter 13 of [[reader_006.pdf]]
Chapter 10 of [[incropera.pdf]]
### Dropwise Condensation
### Filmwise Condensation
$\dot{m} = \rho_{l}u_{m}b\delta$
$\mathrm{Re}_{\delta}=\frac{4\Gamma}{\mu_{l}} = \frac{4\rho_{l}u_{m}\delta}{\mu_{l}}$
![[Pasted image 20250418211250.png|275]] ![[Pasted image 20250421163953.png|400]]
#### Laminar Condensation
Valid for $\mathrm{Re}_{\delta}\leq 30$
For a vertical plate, we can derive the following:
$\Gamma(x) = \frac{\dot{m}(x)}{b} = \frac{g\rho_{l}(\rho_{l}-\rho_{v})\delta^{3}}{3\mu_{l}}$
${} h_{fg}' = h_{fg}+0.68c_{p,l}(T_\text{sat}-T_{s}) = h_{fg}(1+0.68\mathrm{Ja}) {}$
$\bar{h}_{L}=0.943 \left( \frac{ \rho_{l}g(\rho_{l}-\rho_{v})h'_{fg}k^{3}_{l}}{\mu_{l}(T_\text{sat}-T_{s})L} \right)^{1/4}$
$\overline{Nu}_{L}=\frac{\bar{h}_{L}L}{k_{l}}=0.943 \left( \frac{ \rho_{l}g(\rho_{l}-\rho_{v})h'_{fg}L^{3}}{\mu_{l}k_{l}(T_\text{sat}-T_{s})} \right)^{1/4}$
#### Turbulent Condensation