## 1st Law
$\frac{dE_{\text{cv}}}{dt}=\dot{Q}-\dot{W}+\sum_{\text{in}}\dot{m}_{\text{in}}\left( h+\frac{v^{2}}{2}+gz \right)_{\text{in}}-\sum_{\text{out}}\dot{m}_{\text{out}}\left( h+\frac{v^{2}}{2}+gz \right)_{\text{out}}$
$h = u + \frac{P}{\rho}$
## Second Law
$\frac{dS_{\text{cv}}}{dt}=\frac{\dot{Q}}{T_{\text{s}}}+\dot{S}_{\text{gen}}+\sum_{\text{in}} \dot{m}_{\text{in}}S_{\text{in}} - \sum_{\text{out}} \dot{m}_{\text{out}} S_{\text{out}}$
## Mass Conservation
$\frac{d}{dt} \int_{CV}\rho \,dV + \int_{CS} \rho \vec{v} \cdot \hat{n} dA = 0$
$\frac{\delta \rho}{\delta t} + \vec{\nabla}(\rho \vec{v}) = 0$
### Incompressible
The divergence of the velocity field of an incompressible fluid is zero:
$\nabla \cdot\vec{u} = \frac{ \partial u_{x} }{ \partial x } +\frac{ \partial u_{y} }{ \partial y } +\frac{ \partial u_{z} }{ \partial z } = 0$
### Reynold’s transport theorem
$\frac{d}{dt} B_{sys} = \frac{d}{dt} \int_{CV}\beta \rho\,dV + \int_{CS} \beta \rho \vec{v} \cdot \hat{n} dA$
## Linear Momentum
$\sum \vec{F} = \frac{d}{dt} \int_{CV}\vec{v} \rho dV + \sum_{out}\dot{m}_{i}\vec{v}_{i} - \sum_{in} \dot{m}_{i} \vec{v}_{i}$
## Navier Stokes
$\rho \frac{D\vec{v}}{Dt} = -\vec{\nabla}P + \rho \vec{g} + \mu \nabla^{2} \vec{v}$
Assumes incompressible and constant viscosity (newtonian fluid)
Derived from momentum conservation, and terms correspond to inertial, pressure, gravity, and viscous forces, from left to right.
### Expanded form
$
\begin{align}
\rho\left( \frac{\partial v_{x}}{\partial t} + v_{x} \frac{\partial v_{x}}{\partial x} + v_{y} \frac{\partial v_{x}}{\partial y} + v_{z} \frac{\partial v_{x}}{\partial z} \right)
&=
-\frac{\partial p}{\partial x}
+ \rho g_{x}
+ \mu\left( \frac{\partial^{2}v_{x}}{\partial x^{2}} + \frac{\partial^{2}v_{x}}{\partial y^{2}} + \frac{\partial^{2}v_{x}}{\partial z^{2}} \right)
\\
\rho\left( \frac{\partial v_{y}}{\partial t} + v_{x} \frac{\partial v_{y}}{\partial x} + v_{y} \frac{\partial v_{y}}{\partial y} + v_{z} \frac{\partial v_{y}}{\partial z} \right)
&=
-\frac{\partial p}{\partial y}
+ \rho g_{y}
+ \mu\left( \frac{\partial^{2}v_{y}}{\partial x^{2}} + \frac{\partial^{2}v_{y}}{\partial y^{2}} + \frac{\partial^{2}v_{y}}{\partial z^{2}} \right)
\\
\rho\left( \frac{\partial v_{z}}{\partial t} + v_{x} \frac{\partial v_{z}}{\partial x} + v_{y} \frac{\partial v_{z}}{\partial y} + v_{z} \frac{\partial v_{z}}{\partial z} \right)
&=
-\frac{\partial p}{\partial z}
+ \rho g_{z}
+ \mu\left( \frac{\partial^{2}v_{z}}{\partial x^{2}} + \frac{\partial^{2}v_{z}}{\partial y^{2}} + \frac{\partial^{2}v_{z}}{\partial z^{2}} \right)
\end{align}
$
see equation sheet for all expansions in different coordinate systems
| Zero Condition | Term to drop |
| ------------------------------- | ---------------------------------------- |
| Steady state | $\frac{ \partial }{ \partial t } = 0$ |
| Symmetry in direction $\hat{i}$ | $\frac{ \partial }{ \partial x_{i} }=0$ |
| Negligible flow in $\hat{i}$ | $v_{i} = 0$ |
| Inviscid (air) | $\mu \nabla^{2}v=0$ |
### Material Derivative
$\frac{D}{Dt} = \left( \frac{\delta}{\delta t} + v_{x} \frac{\delta}{\delta x} + v_{y} \frac{\delta}{\delta y} + v_{z} \frac{\delta}{\delta z} \right) = \frac{\delta}{\delta t} + (\vec{v} \cdot \vec{\nabla})$
### Bournoulli
For inviscid fluids, drop $\mu \nabla^{2}v=0$ and integrate N-$S$ to get
$\frac{P}{\rho} + \frac{v^{2}}{2}+gz =$ constant along stream